
RESEARCH ARTICLE
www.advancedscience.com

Uncover Hidden Physical Information of Soft Matter by
Observing Large Deformation

Huanyu Yang, Yitao Cheng, Penghui Zhao, Jiageng Cai, Zhaowei Yin, Shaomin Chen,
Ge Guo, Chi Zhu,* Ke Liu,* and Lingyun Zu*

Accurate and non-destructive detection of material abnormalities inside soft
matter remains an elusive challenge due to its variable and heterogeneous
nature, especially regarding non-visual information. Here, a method is
introduced that uncovers the physical information of internal material
abnormalities from large deformations observed on the surface of the soft
object. It finds the most probable values of imperceptible physical parameters
by matching the nonlinear surface deformation between observation and
finite element simulation through parallel Bayesian optimization, balancing
the trade-off between simulation accuracy and computational efficiency.
Numerical and experimental tests, including simulated cases of aortic valve
calcification, are conducted to showcase the effectiveness of our method,
where we successfully recover hidden physical parameters including material
stiffness, abnormality shape, and location. The method holds substantial
promise for advancing the fields of material perception of robots, soft
robotics, biology, and medical diagnostics, offering a powerful tool for the
precise, efficient, and non-invasive analysis of soft matter.
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1. Introduction

Non-destructive testing (NDT)[1,2] is a col-
lection of techniques used to evaluate the
integrity of material surfaces or internal
flaws without causing damage. Typically, its
goal is to identify abnormalities or mate-
rial inconsistencies that could change the
expected behavior of an object. Recently,
many researchers have made efforts to esti-
mate material properties to realize accurate
NDT. Laser vibrometry[3] and Digital Image
Correlation (DIC)[4] are effective tools for
measuring surface displacements. Specifi-
cally, laser vibrometry can be used to inspect
the integrity of structural buildings[5,6] and
materials.[7,8] DIC[9,10] and vibrometry[11,12]

have been applied as modal analysis tech-
niques to infer the properties of homo-
geneous materials.[13,14] Due to the re-
stricted operating conditions and complex
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Figure 1. Method overview. In the fields of a) medical diagnostics, b) material perception of robots, and c) soft robotics, our method offers a powerful
tool for non-invasive analysis by observing surface deformation. d) For any object with material abnormalities, large deformations of key points, as
observed on the object’s surface over time serve as the input to the parallel Bayesian optimization algorithm, in which a virtual twin model based on
finite element analysesis constructed. Through iterative updates, physical information such as the material properties, as well as the shape and location
of the abnormalities can be accurately uncovered when the virtual and physical models match in observed deformation.

setup of these sensors, these methods are often less accessi-
ble. As a result, visual testing methods present a practical and
flexible alternative. In recent years, AI-assisted approaches have
been increasingly used for the characterization of materials’
physical information. For instance, visual vibration tomogra-
phy can be used to infer spatially-varying Young’s modulus and
density,[15] images can be utilized to estimate material types and
surface properties,[16–21] and point clouds can facilitate material
classification.[22,23] While the field is rapidly evolving due to high
industrial demand, existing approaches remain insufficient for
fully addressing the complexities of soft matter due to its variable
and heterogeneous nature.

The non-destructive or non-invasive detection and analysis of
soft matter are crucial for advancing fields such as medical diag-
nostics, material perception of robots, soft robotics[24] and biology
(Figure 1a–c), particularly in assessing the internal structures and
material properties. For instance, in the biomedical field, non-
invasive detection of in-vivo soft tissues plays a vital role in fast
and accurate diagnosis and treatment planning. A prominent ex-
ample is calcific aortic valve disease (CAVD), the leading cause
of aortic stenosis globally, which relies on qualitative visual in-
spection using echocardiography and/or multi-slice computed
tomography (MSCT).[25–28] However, conventional echocardiog-
raphy often fails to accurately assess calcification due to noise,[29]

while the temporal resolution of MSCT is too low to capture the
dynamic motion of valves.[30] The limitations of these methods
in providing a fully quantitative assessment of the pathology un-
derscore the urgent need in clinical practice for more robust,
physically-informed, and detailed diagnostic approaches.

Typically, to understand the behavior of soft matter, nu-
merical simulations are used as virtual twins of the physical

objects.[31–33] Numerous open-source software tools have been
developed specifically to model the complex multi-physics pro-
cesses in soft matter systems. For example, svFSI is a multi-
physics finite element solver that enables the coupled simulation
of electro-mechanical and hemodynamic interactions, effectively
modeling fluid dynamics, structural mechanics, electrophysiol-
ogy, and their multiphysics interactions.[34,35] Other tools, like
FEBio, openCARP, and those developed by Quarteroni et al. fo-
cus on structural mechanics, electrophysiology, and biomechan-
ical modeling, providing precise outputs such as stress, strain,
and displacement based on defined inputs.[36–39]

Based on advanced finite element-related studies, various
techniques, such as the inverse finite element method (iFEM),
have been developed to recover the physical properties of ob-
jects. Van Tonder et al.[40] proposed an improved iFEM method
for Mooney–Rivlin type material characterization, effectively ad-
dressing the challenge of stucking in local minima during opti-
mization. Their constrained optimization technique significantly
reduces parameter variation, thereby enhancing the accuracy and
robustness of material property estimation. Additionally, many
physics-informed deep learning based methods have been de-
veloped. Pal and Naskar[41] proposed a machine learning ap-
proach to predict stress–strain plots for Marlow hyperelastic ma-
terial design, demonstrating the potential of data-driven models
in material characterization. Paral et al.[42] introduced an ANN-
based damage identification method that leverages changes in
the first mode shape profile to detect damage location and sever-
ity. Similarly, Zhong et al.[43] developed a CNN-based approach
using mode shapes and mode curvature differences as inputs,
where mode shapes provided damage localization, though mode
curvature differences exhibited lower accuracy for detecting
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low-degree damage. Perera et al.[44] proposed a roaming damage
method that employs artificial neural networks to predict unmea-
sured mode shape data using limited observations from bridge
structures under various damage scenarios. Physics-Informed
Neural Networks[45] have emerged as a promising deep learning
framework for solid mechanics inversion and surrogate model-
ing by incorporating governing equations into the learning pro-
cess. This hybrid approach enhances physical consistency, en-
abling parameter identification and bridging the gap between tra-
ditional numerical methods and purely data-driven techniques.
However, current approaches mainly rely on gradient-based
methods, which requires tedious sensitivity analysis, making
them difficult to address various inverse problems, particularly in
complex scenarios involving nonlinearity and large deformation.

By matching visible observations between the virtual and phys-
ical worlds, we create a method to recover soft matter’s hidden
physical information such as material properties, as well as the
shape and location of internal abnormalities, based on the par-
allel Bayesian optimization algorithm and finite element mod-
elling (Figure 1d). The deformation of an object is determined
by its material distributions; conversely, the observed deforma-
tion of the object can be used to recover its inherent material
properties. This interrelationship forms the basis of our physi-
cally informed NDT method. The large deformations observed
on the soft matter’s surface serve as the input, which can be
obtained by standard echocardiography and/or MSCT. A finite
element model is then built as the virtual twin to the physical
object. By minimizing the difference between the surface defor-
mation on the finite element model and the observed physical
model, the physical parameters in the virtual model gradually
approach the ground truth. However, this framework faces sev-
eral challenges: difficulty in obtaining gradient during the mini-
mization, extensive computation time per simulation, and large
search spaces for physical parameters such as material moduli.
Traditional optimization algorithms that require extensive evalu-
ation of the forward model and its gradient are thus not suitable
for our problem. We turn to the gradient-free parallel Bayesian
optimization algorithm,[46] which is typically used to optimize
functions that are costly to evaluate and are well-suited for non-
convex inverse problems.

As a result of this approach, our method can accurately
recover physical properties such as Young’s moduli and identify
the shape and position of material abnormalities that could alter
the expected behavior of the object. We demonstrate our method
on three types of numerical examples: the beam, inflation, and
aortic valve model, each featuring distinct geometric features,
boundary conditions, and abnormalities. To further validate our
approach, we conduct experiments on a beam model, which
demonstrates that our method has significant potential for
precise, efficient, and non-invasive inspections of soft matter. In
addition, compared to most existing inverse finite element meth-
ods and physics-informed deep learning-based methods, our
algorithm is specifically designed to handle nonlinear scenarios
involving large deformations. By employing a gradient-free
Bayesian optimization algorithm, our method is capable of solv-
ing a wide range of problems that can be simulated using various
approaches including finite element method, offering superior
generalizability. Furthermore, our method is model-free, unlike
physics-informed deep neural networks, which require extensive

training data. We also leverage parallel computing to improve
computational efficiency, which makes our approach scalable to
larger-scale problems and allows for accurate estimates within
relatively short amount of time.

Our method holds promising applications in material percep-
tion of robots, soft robotics, biology, and medical diagnostics. Ad-
ditionally, this method can be further utilized to construct virtual
twin models of soft matter in the physical space, enabling real-
time monitoring, operational simulations, and state predictions.
This underscores its considerable promise for future applications
in robotic interaction and control, medical diagnostics, and treat-
ment planning.

2. Results

2.1. Numerical Examples

Three numerical examples are conducted to validate our ap-
proach, each characterized by distinct geometry and boundary
conditions. For each example, two models are prepared: one with
abnormality and one without, in order to demonstrate the ef-
fect of internal abnormality on material deformation. We conduct
four types of tests for each example with different unknown prop-
erties to validate the robustness and versatility of our proposed
approach in handling diverse conditions and configurations. All
simulations are conducted using svFSI.[34]

2.1.1. Beam Bending Test

We start with a basic 3D beam example with dimensions of 50
mm × 25 mm × 3 mm, which is discretized into a uniform hex-
ahedral mesh of 20 × 6 × 4 elements, for balance between ac-
curacy and computational efficiency. The homogeneous model
is made of a single type of material designed to mimic silicone
rubber, with an initial tangent of Young’s modulus Eb = 1 × 103

Pa. For details of the nonlinear constitutive model, please refer
to the Method section. The abnormal model is embedded with
a brick-shaped region of abnormality. The base material proper-
ties are identical to the homogeneous model, which is Eb = 1 ×
103 Pa, and the abnormal region differs by exhibiting a signifi-
cantly higher Young’s modulus Ea = 1 × 106 Pa. The abnormal
region measures 20 mm in length, spanning the beam’s width
and height, which is located on the right end of the beam as
shown in Figure 2a. We consider a homogeneous density of 𝜌
= 1 kg/mm3 and Poisson’s ratio of 𝜈 = 0.5 for both materials.
The left end face of the beam is fixed, and a uniform upward dis-
placement is applied to the right end face, which causes the right
side to move upwards by 30 mm. Displacements of the track-
ing points from these two models with all physical parameters
given are considered as the ground truth. An explicit finite ele-
ment method was employed to compute the displacement field
under the same boundary conditions.

Four evenly distributed points along the long edge of the beam
are selected as the key points for tracking (Figure 2a). For the ho-
mogeneous model, our goal is to determine the value of the esti-
mated Young’s modulus Ẽb of the base material. In the case of the
abnormal model, we aim to not only estimate Young’s moduli of
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Figure 2. Results of the beam bending test. a) The undeformed and deformed configurations of the homogeneous and abnormal models. The blue and
red dots on the color bar indicate the ground truth moduli of the base (Eb) and abnormal (Ea) parts. The tracking points are marked by yellow stars.
The red arrow indicates the applied load. b) List of physical parameters to be estimated. c) Convergence history of the four test cases. The estimation
results are shown in (d), (e), (f), and (g). d) Case 1: homogeneous material property without abnormality. e) Case 2: geometries are known, and material
properties are to be estimated. f) Case 3: Eb is known, geometry and material properties of the abnormal part are to be estimated. g) Case 4: All physical
parameters need to be estimated.

both the base material Ẽb and the abnormal material Ẽa but also
approximate the position and shape of the abnormality defined
by center position C and half-width W, as shown in Figure 2b.
The search space for Young’s moduli Ẽb and Ẽa spans from 1 ×
102 to 1 × 1010 Pa, accommodating the typical range for most ma-
terials. The parameters for the central position C̃ and half-width
W̃, are constrained within the ranges of [0, 50] mm and [0, 25]
mm, respectively.

We select different types of unknowns and prepare four cases
for testing, as illustrated in Figure 2c–g. Figure 2c shows the

convergence history of minimizing the loss. The loss is defined
as the deformation difference between the predefined bench-
mark model (or ground truth) and the model with unknowns,
calculated based on the tracking points (see the Experimental
Section for details). We observe a fast convergence in less than
20 iterations for all cases. For the homogeneous model, the pre-
cise value of Ẽb = 1 × 103Pa is obtained just after one iteration
(Figure 2d). For the abnormal model, we conduct three different
tests: (1) estimate both Ẽb and Ẽa (Figure 2e); (2) estimate Ẽa as
well as its position C and shape W (Figure 2f); (3) estimate all
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physical parameters including Ẽb, Ẽa, C, and W simultaneously
(Figure 2g). The three tests converge to the most likely values
of material properties within no more than 80 iterations, with
errors less than 0.2%. Moreover, our approach successfully
recovered the position and shape of the abnormal region (see
Movie S1, Supporting Information). During these tests, each
iteration took approximately 10 min to simulate and update.

To further demonstrate the generality of our method, we intro-
duce a new case, which shares the same geometry, boundary con-
dition, and tracking points as the predefined benchmark model.
However, the constitutive model for this case is set as the Saint
Venant–Kirchhoff hyperelastic model31,61. The displacement field
calculated above is taken as the target for estimation. The esti-
mated variables are the same as in case 3: the Young’s modulus of
the abnormal material Ẽa, along with the central position C̃ and
half-width W̃ of the abnormality. After 6 iterations, we get the
nearly correct results: Ẽa = 1.04 × 106, C̃ = 4.07, and W̃ = 0.92.
The detailed optimization process and constitutive model are
provided in the Supporting Information. This shows that our
method can recover identical results even when applied to dif-
ferent models, highlighting its generalizability. Therefore, our
method can be readily extended to problems involving more com-
plex base models.

2.1.2. Balloon Inflation Test

We develop a 3D isotropic balloon example with a radius of 100
mm and a thickness of 3 mm discretized into hexahedral ele-
ments to simulate an inflation process by applying pressure on
the inner face. The ground truth of the material properties are set
as: Eb = 1 × 103 Pa, Ea = 1 × 106 Pa (Figure 3a), consistent with
the previous example. The region of the abnormality is defined
as the intersection of the balloon and a shape generator defined
as the revolved shape of the following curve[47]:

R𝜃 = R0

[
1 + C1 cos(4𝜃) + C2 cos(8𝜃)

]
x1 = R𝜃 cos(𝜃)

x2 = R𝜃 sin(𝜃).

(1)

This curve revolved around the z-axis to create complex three-
dimensional axis-symmetric geometries. In addition to the tun-
able parameters R0, C1, and C2, the center of this geometry can
also be translated in the three dimensional space by P = [Px, Py,
Pz] from the origin. The region on the balloon that is inside the
shape generator is defined as the abnormal region. Therefore,
the shape and position of the abnormal region are completely
defined by three shape parameters: R0, C1, C2, and three position
parameters: Px, Py, Pz. By randomly generating a set of these pa-
rameters, we create an irregularly shaped area of abnormality, as
depicted in Figure 3b.

For the homogeneous model, the balloon is made of a single
type of material, whose modulus is set as Eb = 1 × 103 Pa. For the
abnormal model, we set Eb = 1× 103 Pa, Ea = 1× 106 Pa, R0 = 41.2
mm, [C1, C2] = [0.47, −0.35], [Px, Py, Pz] = [− 4.5, 62.1, 65.7] mm.
Our goal is to estimate different combinations of these values
when they are unknown, as shown in Figure 3d–g. The search
space of estimated values is defined as: Ẽb ∈ [1 × 102, 1 × 1010]Pa,

Ẽa ∈ [1 × 102, 1 × 1010]Pa, R̃0 ∈ [0, 100] mm, C̃1, C̃2 ∈ [−0.5, 0.5],
and P̃x, P̃y, P̃z ∈ [0, 200] mm.

Figure 3c shows the convergence history of the four tests. For
the homogeneous model, we can find the true value of Ẽb =
1 × 103 Pa in one iteration (Figure 3d). As for the three tests of
the abnormal model, the position and shape of the abnormality
are recovered after no more than 250 iterations (Figure 3e–g),
with quite high structural similarity (SSIM).[48] Moreover, we
find that Young’s modulus in the base part Ẽb can be accurately
estimated no matter what the unknowns are. The slight mis-
match of Ẽa, no more than 2.6% difference from the true Ea,
is attributed to the minor differences in the estimated shape
of the abnormality. We show the spherical map projections of
the northern hemisphere of the balloon in Figure 3h. To as-
sess the accuracy of the shape estimation, we adopt a quanti-
tative metric, the SSIM between the ground truth and the es-
timated shapes of the abnormality. When two shapes are iden-
tical, the SSIM becomes 1. The SSIM we obtained is 0.9853
and 0.9579 for cases 3 and 4, respectively. We note that such
deviation is almost inevitable due to the nature of the problem
that different combinations of the physical parameters may lead
to the same deformation. Each iteration during the balloon in-
flation test required about 15 min for simulation and updates.
The convergence process is shown in Movie S1 (Supporting
Information).

2.1.3. Aortic Valve Test

To demonstrate the potential application of our method, we de-
sign an example of the tricuspid aortic valve (TAV), simulating the
motion of both a healthy valve and a CAVD-afflicted valve over a
single cardiac cycle. The healthy valve and the calcified valve are
analog to the homogeneous model and the abnormal model in
the previous examples, where the calcified part is considered as
the abnormality. Using the general parametric geometry of the
TAV,[49] which is based on CT measurements, we construct a full
3D geometry of the aortic valve without calcification. The valve
geometry is segmented into triangular shell elements.

For the healthy valve model, Young’s modulus Eb is set at 1 ×
106 Pa with a thickness Tb of 0.3 mm, reflecting typical physio-
logical values. For the calcified parts in the CAVD model, Young’s
modulus Ea increases to 1 × 109 Pa, with the thickness Ta ex-
panding to 0.9 mm, aligning with average empirical values.[50]

To simplify, we represent the material properties of the valve us-
ing arterial stiffness, AS = E · T. The region of calcification is
defined using the same shape generator as in the previous ex-
ample, which could closely represent the partial arc shapes of
typical calcification.[50] Regarding boundary conditions, a trans-
valvular pressure gradient is applied across the valve. The lower
edges of each leaflet are fixed, whereas the upper edges remain
free, allowing the valve to mimic the in-vivo response to cardiac
pressures. For each valve, three points with the largest deforma-
tion in the upper half of the valve are selected as tracking points
(Figure 4a).

The calcified region is characterized by the shape and po-
sition parameters of the shape generator: R0, C1, C2, and [Px,
Py, Pz]. To estimate these unknown values, the ranges are
defined as Ẽb ∈ [1 × 103, 1 × 1012] Pa, Ẽa ∈ [1 × 103, 1 × 1012] Pa,
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Figure 3. Result of the balloon inflation test. a) The undeformed and deformed configurations of the homogeneous and abnormal models. The blue
and red dots on the color bar indicate the ground truth values of Eb and Ea. The red arrow indicates the applied load. The tracking points are taken as all
vertices of the finite element discretization. b) List of physical parameters to be estimated in this example. c) Convergence history of the four test cases.
d–g) The estimation results of Cases 1 to 4. h) Spherical map projections of the northern hemisphere of the balloon, comparing the ground truth and
estimated shapes of the abnormalities.

T̃b ∈ [1 × 0.3, 1 × 101.2] mm, T̃a ∈ [1 × 0.3, 1 × 101.2] mm, R̃0 ∈
[0, rco], C̃1, C̃2 ∈ [−0.5, 0.5], and P̃x, P̃y, P̃z ∈ [−rco, rco], where rco is
the radius of the whole aortic valve.

Figure 4c illustrates the detection process for four types of
tests. For the homogeneous model, the precise values of Young’s
modulus and thickness are accurately recovered after 40 itera-
tions (Figure 4d). For the abnormal cases, when the shape and
position of abnormalities are known, arterial stiffness for both
the healthy and abnormal regions is estimated to closely match
the ground truth (Figure 4e). Such a case is reminiscent of the
situation when MSCT located the region of calcification. In case

3, when nothing is known except for the arterial stiffness of the
healthy valve, the calcified arterial stiffness, correct positions, and
highly similar shapes of the abnormalities are approximated af-
ter no more than 2 iterations (Figure 4f). In case 4, when no
physical information is known, we also get pretty close estimates
(Figure 4g) - this mimics the situation when only ultrasonic
videos are available. In all four tests, the differences in arterial
stiffness for both the healthy and abnormal regions do not ex-
ceed 9%.

The small deviations in arterial stiffness arise due to sub-
tle differences in the estimated shape of the abnormalities
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Figure 4. Results of the aortic valve test. a) The undeformed and deformed configurations of the homogeneous (healthy) and abnormal (calcified) valve
models. The blue and red dots on the color bar indicate the ground truth values of ASb and ASa. The tracking points are marked by yellow stars. The
boundary condition is illustrated in the inset. b) Geometry of the aortic valve model, and a list of physical parameters to be estimated in this example.
c) Convergence history of the four testing cases. d–g) The estimation results of Cases 1 to 4. h) Visualizations of the ground truth and the estimated
shapes of the abnormal part using PCA to project the 3D models onto a 2D plane.

(Figure 4f,g). Specifically, we use the principal component
analysis (PCA)[51] algorithm to project the ground truth and the
estimated results of cases 3 and 4 onto a two-dimensional plane
for visualization, as shown in Figure 4h. The SSIM between the
2D visualization results of cases 3 and 4 and the ground truth
are 0.9661 and 0.9723, respectively. The accuracy of estimation
can be further improved by considering more tracking points. In
the aortic valve example, the simulation and update process for
each iteration took approximately 8 hours, owing to the complex-
ity of the problem. The convergence process is shown in Movie
S1 (Supporting Information).

2.2. Experimental Example

To show the applicability of our method to practical problems,
we design an experimental beam bending test (see Movie S2,
Supporting Information). The elastic beam is prepared using
Polydimethylsiloxane (PDMS).[52] Preparation for PDMS is
straightforward: the silicone base and curing agent are mixed by
weight, the mixture is degassed to remove bubbles, poured over
a master mold, and then cured in a vacuum oven to remove any
entrapped gases. After cooling, the PDMS can be easily peeled
and cut to shape.

Adv. Sci. 2025, 2414526 2414526 (7 of 12) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Two beam models, each measuring 100 mm × 25 mm × 3
mm, are fabricated using PDMS. One model is homogeneous,
while the other includes a manually inserted 40 mm × 25 mm
polyimide membrane at the bottom-center of the mold during
the PDMS casting process. Nineteen small pins are nailed evenly
along the long edge to serve as visual tracking points, which are
sufficiently contrastive and small to have little impact on track-
ing accuracy (Figure 5a). The beam is designed to be symmetric
about the y-axis. An upward displacement of 30 mm is applied at
the center along the z-direction of the beam (Figure 5b). Due to
its symmetry, we only need to simulate half of the beam for sim-
plicity.

Using the binocular tracking algorithm mentioned in the
Supporting Information, we take two videos simultaneously of
the beam from different perspectives. The displacements of the
tracking points are then calculated through the principle of binoc-
ular stereoscopic vision.[53,54] As shown in Figure 5b, the defor-
mations of the homogeneous and the abnormal beams are quite
different. Notably, the differences at tracking points 6 to 9, which
are within the range of the abnormality, are particularly signif-
icant (Figure 5c). The displacements in the xy-direction are too
minor to be included in our consideration.

From previous numerical examples, we observe that when
there is a single unknown modulus, the estimation made by our
method is precise. Therefore, in this example, we estimate the ef-
fective initial Young’s modulus of the base material as Eb = 4.07
× 105 Pa using the homogeneous model, which is considered as
the ground truth. For the abnormal part, given the ground truth
Eb and the position of abnormality, we obtain the equivalent Ea =
1.17 × 108 Pa (Figure 5d) as ground truth. Two cases of the test
are then conducted: (1) estimation of Ẽb and Ẽa; (2) estimation
of Ẽb, Ẽa, and the shape and position of the abnormality, char-
acterized by Cx, Cz, Wx, and Wz (Figure 5e). In case 1, the es-
timated Young’s modulus for the two regions is Ẽb = 6.32 × 105

Pa and Ẽa = 1.65 × 108 Pa. In case 2, we obtain Ẽb = 8.7 × 105 Pa
and Ẽa = 8.18 × 107 Pa. The estimated geometry of the abnormal-
ity is shown in Figure 5g. In all tests, the error in the estimated
Young’s modulus does not exceed 6%.

In fact, the final estimation with all physical parameters un-
known is more realistic. This is, because during the curing pro-
cess, PDMS resin could flow underneath the polyimide mem-
brane, which means that it cannot remain strictly at the bottom
of the beam, but slightly above the bottom, as our estimation un-
covered. The comparison of key point trajectories between the
experimental and numerical results is illustrated in the Support-
ing Information.

In this example, there are three types of imperfections: noise
in the observations, inaccuracies in the boundary and initial con-
ditions, and errors in the model. Specifically, during the visual
tracking process, inherent errors and noise are inevitable. Fur-
thermore, due to sliding effects, the boundary conditions be-
tween the simulation and the experimental setup do not fully
align. Model inaccuracies also exist, such as slight discrepancies
between the actual beam length and the simulated length. How-
ever, despite these challenges, the overall results remain satisfac-
tory. This is due to, unlike gradient-based methods, which may
sometimes diverge due to small errors, the Bayesian optimiza-
tion algorithm ensures that predictions stay closer to reality by
minimizing error at each iteration. By employing the Bayesian

optimization algorithm, we are able to consistently bring the re-
sults closer to the true physical properties, even under imper-
fect conditions.

3. Conclusion

In this paper, we introduced a method for accurately uncover-
ing the hidden physical information of soft matters by analyzing
large deformations observed on the surface. Our approach uti-
lizes a parallel Bayesian optimization algorithm combined with
finite element simulations to minimize the difference in defor-
mations observed in the virtual twin model and the actual phys-
ical model. Through three numerical examples and one experi-
mental validation, we demonstrated the efficiency and accuracy
of our approach in estimating material properties, abnormality
shapes, and positions.

Our method differs significantly from existing studies in terms
of target, solution algorithm, and effectiveness. Most existing re-
search focuses on small deformations and is primarily targeted at
infinitesimal deformations, whereas our method is designed to
handle finite, nonlinear, and large deformations, making it more
applicable to complex real-world scenarios. Unlike traditional
gradient-based methods, we employ a gradient-free Bayesian ap-
proach, which enhances generalizability and avoids the limita-
tions of local minima. Moreover, our method achieves highly ac-
curate estimations with significantly fewer iterations, leading to
a rapid reduction in error. Especially in large deformation scenar-
ios, the deformation discrepancy remains low. Additionally, our
method takes advantage of parallel computing, which is not feasi-
ble for traditional gradient-based approaches, further improving
computational efficiency and scalability.

Our research has significant potential to advance the field of
non-destructive testing for soft matters, particularly in material
perception of robots, soft robotics, biology, and medical diagnos-
tics. For instance, the balloon inflation test is primarily applied in
soft robot diagnostics. Many pneumatic soft robots rely on infla-
tion to operate, and when these robots experience damage or ma-
terial degradation, their behavior closely resembles the deforma-
tion patterns observed in the balloon inflation test. Our approach
offers an effective method to assess the service condition of soft
robots, detecting damage and degradation without the need for
intrusive measures. The aortic valve test is primarily applied in
clinical cardiac valve diagnostics. Our method can provide quan-
titative information to the doctors, as opposed to relying solely
on qualitative judgment. We plan to apply our method for actual
clinical tests in our future research.

Looking forward, integrating our algorithm with material per-
ception of robots will provide necessary information about scene
understanding, affordance estimation, manipulation, and grasp,
realizing the potential for revolutionizing robotic interaction with
the real world, and helping robots go beyond their current limits
and reach their potential. Furthermore, using our method in the
field of medical imaging techniques could lead to more quanti-
tative, reliable, and accurate diagnostics for various internal dis-
eases. The robust and adaptable performance of our approach
promises great potential for applications in outcome prediction,
prognosis, and digital twins in clinical settings. This paves the
way for further innovations in medical diagnostics, offering a
promising tool for medical practitioners and researchers.

Adv. Sci. 2025, 2414526 2414526 (8 of 12) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Results of the experimental test. a) A physical beam model is prepared using PDMS, with or without Polyimide membrane. Nineteen pins
are nailed on the long edge of each model for visual tracking. b) The experimental setup. The left and right ends are securely fixed, and an upward
displacement of 30mm is applied at the center of the beam. c) The z-direction displacement of the tracking points over time for both models. d)
The ground truth of both models. e) The geometry of the beam and the physical parameters are to be estimated. f) Convergence history of the two
testing cases. g) The estimated results of the two cases. Case 1: geometries are known, and material properties are to be estimated. Case 2: all physical
parameters of the abnormal model need to be estimated, including the vertical position of the Polymide membrane.
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4. Experimental Section
We aim to use the observed surface deformation to recover physical

information of material abnormalities realizing NDT. The input for our
method is a video capturing the surface deformation, for which a corre-
sponding geometry is already known. The output includes values of phys-
ical properties, as well as the shape and position of abnormalities. This
process involves three stages: 1) tracking the displacements of key points
on the object’s surface, 2) constructing the virtual twin model that is con-
sistent with real scenarios, and 3) estimating physical information that
best matches the observed deformation using our algorithm. Each itera-
tion of the Bayesian optimization algorithm involves simulating finite el-
ement models in parallel to significantly enhance accuracy and efficiency.
(Figure 1 shows an overview of the method).

Estimating Material Properties: Our primary goal is to align the defor-
mation calculated from finite element simulations with those tracked in
experiments. The “mipego” python library is employed as our optimiza-
tion Section Bayesian Optimization Algorithm. A finite element simulator
is integrated and executed within the objective function at each iteration.

The experimental deformation of the key points is denoted as D. The
corresponding numerical displacement is extracted as D̂. Subsequently,
the objective function is constructed by comparing the numerical defor-
mation with the actual measurements and is formulated as:

L = ‖‖‖D − D̂‖‖‖2
(2)

In practice, the algorithm simultaneously seeks the optimal physical
information such as material properties M as well as the positions and
shape of abnormalities, represented by P and S, respectively:

M∗, P∗, S∗ = arg min
M,P,S

L (3)

Bayesian Optimization Algorithm: Bayesian optimization (BO) is a
strategy used for optimizing functions that are costly to evaluate, often re-
quiring minutes or hours per assessment. It primarily involves two com-
ponents: a Surrogate Model and an Acquisition Function. 1) Surrogate
Model: BO begins by constructing a surrogate model of the objective func-
tion, which approximates the true function. This model helps quantify the
uncertainty in predictions, typically employing Gaussian process regres-
sion. However, other Bayesian machine learning techniques or decision
tree models may be employed based on the specific requirements and
characteristics of the data. 2) Acquisition Function: This function, derived
from the surrogate model, plays a key role in guiding the optimization
process by determining where to sample next. It manages the trade-off be-
tween exploitation (sampling where the model predicts high performance)
and exploration (sampling in regions of high uncertainty). Common acqui-
sition functions include Expected Improvement, Probability of Improve-
ment, and Upper Confidence Bound. Each new sample updates the surro-
gate model, enhancing prediction accuracy and minimizing uncertainties,
thus progressively refining the optimization approach.[46]

In this paper, we use the Mixed-Integer Parallel Efficient Global
Optimization(MIP-EGO) algorithm[55] to address the physical informa-
tion recovering problem. The MIP-EGO algorithm introduces significant
improvements to the traditional BO approach:

(1) Moment-Generating Function of the improvement: MIP-EGO em-
ploys the so-called Moment-Generating Function (MGF)[56] based ac-
quisition function, which effectively balances exploitation and explo-
ration. This function has a closed form and can be expressed as:

M(x, t) = Φ

(
Lmin − L̂′(x)

s(x)

)
e(Lmin−L̂(x)−1)t+ ŝ2(x)

2 t2)

L̂′(x) = L̂(x) − ŝ2(x)t

(4)

Algorithm 1 MIP-EGO for NDT.

1: Construct finite element model

2: Place Random Forest prior

3: Sample the initial configuration at n0 points (X, L(X))

4: Train a random forest (RF) on (X, L(X))

5: while simulation ≠ observation or n ⩽ N do

6: for each i = 1 → q do

7: ⊳ parallel for-loop

8: ti ← LognormalN(0, 1)

9: x̃i ← mies(x, ti), x ∈ C

10: compute ỹi ← L(x̃i)

11: end for

12: X ← X ∪
{

x̃1,… , x̃q

}
13: L ← L ∪

{
ỹ1,… , ỹq

}
14: re-train RF on the augmented data set (X, L(X))

15: end while

where Lmin = min {y(1), y(2), …, y(n)} represents the current best per-
formance over all evaluated configurations, L̂(x) denotes the predic-
tion on configuration x, ŝ2(x) signifies the empirical variance of the
prediction, and Φ(·) denotes the cumulative distribution function of
the standard normal distribution. The acquisition function M incorpo-
rates an additional real parameter t (temperature), which is sampled
from a log-normal distribution Lognormal(0, 1) and directly influences
the balance between exploring new regions and exploiting known ar-
eas of the search space. As the parameter t increases, M prioritizes
configurations with high uncertainty, thereby enhancing exploration.
Conversely, decreasing t shifts the focus toward exploitation, empha-
sizing configurations predicted to offer high performance. The value
of t can be strategically set based on the available evaluation budget:
a larger budget allows for a higher t setting, promoting a broader, al-
beit slower, global search strategy; a smaller budget suggests a lower
t setting, which accelerates the search but focuses it more narrowly.

(2) Parallelization: MIP-EGO facilitates parallel execution through batch-
sequential optimization, generating multiple candidate configura-
tions in each iteration using different temperature parameters t. This
leads to the instantiation of q different M functions based on the var-
ied temperatures, each criterion aimed at identifying a promising con-
figuration by maximizing its value. This not only accelerates the con-
vergence process but also broadens the exploration of the solution
space, making the algorithm more efficient in finding optimal config-
urations across a range of possible solutions.
These enhancements allow MIP-EGO to improve the optimization
of complex systems significantly, offering faster convergence and
broader exploration capabilities compared to traditional BO meth-
ods.

Considering the large search space of material properties, we choose
random forest as our surrogate model out of its robust performance in
handling complex and multi-dimensional data. Our algorithms were ex-
ecuted on a high-performance computing platform equipped with dual
AMD EPYC 7H12 64-core Processors, providing a total of 256 logical pro-
cessors with a base clock speed of 2.60 GHz, and 503 GiB of DDR4 RAM.
To accommodate computational demands, we set the number of candi-
date solutions and the number of allowable jobs for parallelizing to 100
each. The acquisition function employed is the MGF Infill with the tem-
perature parameter t set to 2, facilitating an effective balance between ex-
ploration and exploitation.

Constitutive Model: The mechanical behavior of soft materials is of-
ten described using hyper-elastic material constitutive relations, par-
ticularly within the Ogden series, which includes models such as the
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Mooney–Rivlin and Neo–Hookean models.[57–60] In this study, we adopted
the Neo–Hookean model for all three tests. The classical strain energy den-
sity function for this model is expressed as:

𝜙 = 𝜇

2
(𝜆2

1 + 𝜆2
2 + 𝜆2

3 − 3) (5)

where 𝜇 is the shear modulus, and the 𝜆i are the principal stretches.
For an incompressible Neo–Hookean material with J = 𝜆1𝜆2𝜆3 = 1, the

Cauchy stress tensor 𝜎 is expressed as:

𝝈 = FSFT − pI (6)

where F is the deformation gradient tensor, I is the identity tensor, and p
represents the pressure, which is introduced to maintain the incompress-
ibility condition J = 1. The second Piola–Kirchhoff stress tensor S is given
by:

S = 𝜇(𝜆1n1 ⊗ n1 + 𝜆2n2 ⊗ n2 + 𝜆3n3 ⊗ n3) (7)

where ni are the unit vectors along the principal directions of stretch.[61]

The displacement-based governing equations for the materials are for-
mulated as:

𝜌
d2u
dt2

= ∇ ⋅ 𝝈(u) + 𝜌b

J = 1

(8)

where u represents the displacement, and b denotes the body forces.
In our approach, Young’s modulus E is treated as an estimated variable

and serves as the input parameter for the finite element model. We con-
sider incompressible materials for all examples, and thus the Poisson’s ra-
tio is 𝜈 = 0.5. The relationship between the shear modulus 𝜇 and Young’s
modulus E is as follows:

E = 2𝜇(1 + 𝜈) (9)
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Supporting Information is available from the Wiley Online Library or from
the author.
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